Eosinophilic lung diseases

Chai Gin Tsen
Department of Respiratory and Critical Care Medicine

Tan Tock Seng Hospital
The eyes do not see what the mind does not know

Not very common

A high index of suspicion is required
Introduction

• Increased eosinophils in one or more compartments of the lung – airway, pleural, parenchyma.

• Lung involvement + peripheral eosinophilia = Eosinophilic lung disease?

• Eosinophilic lung diseases may not always have peripheral eosinophilia.

• Not all patients with peripheral eosinophilia has eosinophilic lung disease.
The obligatory classification slide

• Eosinophilic (Eos) lung disease of undetermined cause
 • Lung limited: acute eos pneumonia, chronic eos pneumonia
 • Systemic: Eos granulomatosis with polyangiitis (formerly Churg-Strauss syndrome), hypereosinophilic syndrome

• Eosinophilic lung disease of determined cause (secondary causes)
 • Parasites
 • Allergic bronchopulmonary aspergillosis (ABPA)
 • Drugs and toxins
 • Others: malignancy, asthma, idiopathic interstitial pneumonia (IPF, chronic HP, Cryptogenic organizing pneumonia)
Hence history should include

• Symptoms: Acute/subacute/chronic
• Occupation/environmental exposures
• Drugs
• Travel history
• Infectious symptoms
• History of asthma
• Systemic symptoms
Investigations

• Directed by history

• May include, but not limited to:
 • Lung function tests
 • ANCA
 • Serum IgE levels
 • Stool for ova cyst parasites
 • Bronchoscopy and bronchoalveolar lavage

• May need ID, hematology or rheumatology consult
My approach
Peripheral eosinophilia

1. If it is persistently elevated, evaluate for the causes of eosinophilia – long list of causes
2. Is there pulmonary involvement?
3. Are lungs the only organ involved? Or part of a systemic disease?
4. Evaluate for secondary causes of pulmonary eosinophilia
5. Primary causes – diagnosis of exclusion
Other causes of peripheral eosinophilia

- Allergies – food, drug, environment
- Worms and other infectious disease
- Malignancy especially hematological malignancy
- Other organ involvement can also cause peripheral eosinophilia eg GI, renal, dermatology etc.
Case 1
Case 1

- 45 year old Indian male
- Cough x 3/52 with fever for 1/52
- Symptoms not better after a course of clarithromycin
- Recently returned from India
- Referred from ED to TBCU for possible PTB
Progress

• Following tests were ordered:
 • Sputum AFB smears
 • Mantoux test
• Another course of antibiotics
• Review in 1/52

• Then we received a call from Dr Cynthia Chee
How come you did not see the eosinophil counts done in ED?

<table>
<thead>
<tr>
<th>Full Blood Count</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White Blood Cell</td>
<td>12.2</td>
<td>H</td>
<td>x10 9/L</td>
</tr>
<tr>
<td>Red Blood Cells</td>
<td>4.81</td>
<td>N</td>
<td>x10 12/L</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>14.3</td>
<td>N</td>
<td>g/dL</td>
</tr>
<tr>
<td>MCV</td>
<td>86</td>
<td>N</td>
<td>fl</td>
</tr>
<tr>
<td>MCH</td>
<td>30</td>
<td>N</td>
<td>pg</td>
</tr>
<tr>
<td>MCHC</td>
<td>35</td>
<td>H</td>
<td>g/dL</td>
</tr>
<tr>
<td>Haematocrit</td>
<td>41.1</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Platelets</td>
<td>293</td>
<td>N</td>
<td>x10 9/L</td>
</tr>
<tr>
<td>MPV</td>
<td>8.6</td>
<td>N</td>
<td>fl</td>
</tr>
<tr>
<td>RDW</td>
<td>13.1</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Differential Counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophils %</td>
<td>50.5</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Neutrophils</td>
<td>6.16</td>
<td>H</td>
<td>x10 9/L</td>
</tr>
<tr>
<td>Lymphocytes %</td>
<td>17.4</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>2.13</td>
<td>N</td>
<td>x10 9/L</td>
</tr>
<tr>
<td>Monocytes %</td>
<td>8.2</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Monocytes</td>
<td>1.09</td>
<td>H</td>
<td>x10 9/L</td>
</tr>
<tr>
<td>Eosinophils %</td>
<td>23.7</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Eosinophils</td>
<td>2.89</td>
<td>H</td>
<td>x10 9/L</td>
</tr>
<tr>
<td>Basophils %</td>
<td>0.2</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Basophils</td>
<td>0.02</td>
<td>N</td>
<td>x10 9/L</td>
</tr>
</tbody>
</table>
Progress

• Treated as tropical pulmonary eosinophilia
• Diethylcarbamazine x 2/52

• Not surprisingly AFB cultures were negative
Tropical pulmonary eosinophilia

- Associated with mosquito-borne filarial parasites Wuchereria bancrofti and Brugia malayi.
- Endemic in Indian subcontinent, SEA, S America, Africa, S Pacific islands.
- Immune hyper-responsiveness to microfilariae trapped in the lungs.
- Midnight blood film to “catch” the microfilariae in blood.
- Serologies
- Treatment: Diethylcarbamazine for 2 to 3 weeks
- 20% may relapse
Simple pulmonary eosinophilia (Löffler syndrome)

- Usually more acute
- Transient, mild self limited hypersensitivity response to parasites migrating through the lungs.
- Migratory pulmonary infiltrates
- Ascaris lumbricoides, Strongyloides stercoralis etc
- Treatment: Mebendazole
Case 2
Case 2

• 54 year old Indian male
• Previous history of PTB in 2003 complicated by bronchiectasis
• Worsening cough, greenish sputum, dyspnoea over 6 months
• On and off fever
Differential diagnosis of “fleeting” or “migratory” pulmonary infiltrates on CXR

- Aspiration pneumonia
- Drug induced lung injury
- Cryptogenic organizing pneumonia
- Simple pulmonary eosinophilia
- Chronic eosinophilic pneumonia
- Allergic bronchopulmonary aspergillosis
<table>
<thead>
<tr>
<th>Test Name</th>
<th>UoM</th>
<th>16-Dec-2009 13:19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosinophils (EOS)</td>
<td>x10 9/L</td>
<td>1.2</td>
</tr>
<tr>
<td>Eosinophils % (EOSP)</td>
<td>%</td>
<td>20.5</td>
</tr>
<tr>
<td>Haemoglobin (HB)</td>
<td>g/dL</td>
<td>14.6</td>
</tr>
<tr>
<td>Platelets (PLT)</td>
<td>x10 9/L</td>
<td>196</td>
</tr>
<tr>
<td>White Blood Cell (WBC)</td>
<td>x10 9/L</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Proximal bronchiectasis
Mucus plugging
Tree in bud opacities
Peribronchial thickening
Progress

• Broncho-alveolar lavage
 • Bacterial, AFB cultures NEG
 • Fungal culture: Aspergillus flavus

• Total IgE > 1000
• Aspergillus antibody NEG
Started on Prednisolone and Itraconazole

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosinophils (EOS)</td>
<td>x10 9/L</td>
<td>1.2</td>
<td>1.06</td>
<td>0.9</td>
<td>0.28</td>
<td>0.36</td>
<td>0.21</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>Eosinophils % (EOSP)</td>
<td>%</td>
<td>20.5</td>
<td>12.7</td>
<td>11.6</td>
<td>3.1</td>
<td>4.3</td>
<td>2.4</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Haemoglobin (HB)</td>
<td>g/dL</td>
<td>14.6</td>
<td>14.7</td>
<td>14.2</td>
<td>14.2</td>
<td>13.2</td>
<td>15</td>
<td>13.6</td>
<td>14.1</td>
</tr>
<tr>
<td>Platelets (PLT)</td>
<td>x10 9/L</td>
<td>196</td>
<td>202</td>
<td>221</td>
<td>199</td>
<td>218</td>
<td>241</td>
<td>160</td>
<td>168</td>
</tr>
<tr>
<td>White Blood Cell (WBC)</td>
<td>x10 9/L</td>
<td>5.9</td>
<td>8.4</td>
<td>7.8</td>
<td>9</td>
<td>8.5</td>
<td>8.6</td>
<td>6</td>
<td>5.7</td>
</tr>
</tbody>
</table>
Allergic bronchopulmonary aspergillosis (ABPA)

International Society for Human and Animal Mycology (ISHAM) working group diagnostic criteria for allergic bronchopulmonary aspergillosis

<table>
<thead>
<tr>
<th>Predisposing conditions (one must be present):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obligatory criteria (both must be present):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus skin test positivity or elevated IgE levels against Aspergillus fumigatus</td>
</tr>
<tr>
<td>Elevated total IgE concentration (typically >1000 IU/mL, but if the patient meets all other criteria, an IgE value <1000 IU/mL may be acceptable)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other criteria (at least two must be present):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitating serum antibodies to A. fumigatus or elevated serum Aspergillus IgG by immunoassay</td>
</tr>
<tr>
<td>Radiographic pulmonary opacities consistent with ABPA</td>
</tr>
<tr>
<td>Total eosinophil count >500 cells/μL in glucocorticoid-naive patients (may be historical)</td>
</tr>
</tbody>
</table>
ABPA

- Not very common:
 - Only complicates 1-2% of asthmatics and 2-15% with cystic fibrosis (CF)
 - Rarely it can happen in patients without asthma or CF
- Abnormal host response to fungus
- Consider in poorly controlled asthma
- Treatment: steroids ± itraconazole
Case 3
Case 3

• 72 year old Chinese man
• Admitted for non-resolving pneumonia – persistent lung infiltrates despite multiple courses of antibiotics
• Ex smoker
• Had been taking TCM
• Rhonchi heard on physical exam
Investigations

• CRP 19.4
• Sputum AFB smear x 2 NEG
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosinophils (EOS)</td>
<td>x10 9/L</td>
<td>2.18</td>
<td>1.48</td>
<td>1.07</td>
<td>2.21</td>
<td>2.18</td>
<td>1.48</td>
<td>1.44</td>
</tr>
<tr>
<td>Eosinophils % (EOSP)</td>
<td>%</td>
<td>25.0</td>
<td>19.2</td>
<td>10.4</td>
<td>25.5</td>
<td>26.9</td>
<td>9.3</td>
<td>10.2</td>
</tr>
<tr>
<td>Haemoglobin (HB)</td>
<td>g/dL</td>
<td>12.0</td>
<td>13.5</td>
<td>12.2</td>
<td>12.8</td>
<td>13.1</td>
<td>13.3</td>
<td>13.3</td>
</tr>
<tr>
<td>Platelets (PLT)</td>
<td>x10 9/L</td>
<td>212</td>
<td>244</td>
<td>194</td>
<td>195</td>
<td>201</td>
<td>229</td>
<td>221</td>
</tr>
<tr>
<td>White Blood Cell (WBC)</td>
<td>x10 9/L</td>
<td>8.7</td>
<td>7.7</td>
<td>10.3</td>
<td>8.6</td>
<td>8.1</td>
<td>15.9</td>
<td>14.1</td>
</tr>
</tbody>
</table>
Previously noted infective/inflammatory changes of both lungs shows interval improvement. New ground-glass opacities in both lung apices, right middle lobe and left lingular segment.
Further investigations

- Stool ova cyst parasites: NEG
- ANCA NEG
- BAL ova cyst parasites NEG
Diagnosis:
Chronic eosinophilic pneumonia
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eosinophils (EOS)</td>
<td>x10 9/L</td>
<td>1.07</td>
<td>2.21</td>
<td>2.18</td>
<td>1.48</td>
<td>1.44</td>
<td>0.08</td>
<td>0.14</td>
<td>0.00</td>
</tr>
<tr>
<td>Eosinophils % (EOSP)</td>
<td>%</td>
<td>10.4</td>
<td>25.5</td>
<td>26.9</td>
<td>9.3</td>
<td>10.2</td>
<td>0.9</td>
<td>3.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Haemoglobin (HB)</td>
<td>g/dL</td>
<td>12.2</td>
<td>12.8</td>
<td>13.1</td>
<td>13.3</td>
<td>13.3</td>
<td>12.1</td>
<td>12.0</td>
<td>13.1</td>
</tr>
<tr>
<td>Platelets (PLT)</td>
<td>x10 9/L</td>
<td>194</td>
<td>195</td>
<td>201</td>
<td>229</td>
<td>221</td>
<td>208</td>
<td>212</td>
<td>232</td>
</tr>
<tr>
<td>White Blood Cell (WBC)</td>
<td>x10 9/L</td>
<td>10.3</td>
<td>8.6</td>
<td>8.1</td>
<td>15.9</td>
<td>14.1</td>
<td>8.7</td>
<td>4.4</td>
<td>8.4</td>
</tr>
</tbody>
</table>
Chronic eosinophilic pneumonia

- Chronic onset dyspnoea, cough, wheeze
- < 10% has no peripheral eosinophilia
- BAL eosinophilia
- Treatment: Corticosteroids – taper over 6 to 12 months
- Relapse up to 50%
The classical photographic negative of pulmonary oedema

Only seen in <25% of the cases
Acute eosinophilic pneumonia

- Presentation similar to ARDS, severe community acquired pneumonia or acute interstitial pneumonia
- Smokers
- 2/3 need mechanical ventilation
- Peripheral blood eosinophilia not prominent
- BAL eosinophilia
- High dose steroids with rapid improvement
Case 4
Case 4

- 71 year old Chinese man
- Non smoker
- History of stiff person syndrome on long term prednisolone
- Cough for 2 weeks, fever, hemoptysis, hypotensive, hypoxic.
In this instance, there is no eosinophilia
DESpite IV PIP/TAZO + VANCOMYCIN
Progress

• Patient was deemed too sick for bronchoscopy and BAL (on 50% ventimask)
• Bacterial cultures, AFB smears, PCP from induced sputum were all negative

<table>
<thead>
<tr>
<th>Test Name</th>
<th>UoM</th>
<th>08-Dec</th>
<th>11-Dec</th>
<th>12-Dec</th>
<th>13-Dec</th>
<th>14-Dec</th>
<th>15-Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>g/L</td>
<td>31</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td>U/L</td>
<td>59</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>U/L</td>
<td>48</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain Natriuretic Pt</td>
<td>pg/mL</td>
<td></td>
<td></td>
<td></td>
<td>342</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Reactive Protein</td>
<td>mg/L</td>
<td>42.2</td>
<td>11.0</td>
<td>6.9</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatinine</td>
<td>umol/L</td>
<td>66</td>
<td>53</td>
<td>65</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosinophils</td>
<td>x10 9/L</td>
<td>0.49</td>
<td>0.01</td>
<td>0.01</td>
<td>0.18</td>
<td>0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>Eosinophils %</td>
<td>%</td>
<td>2.5</td>
<td>0.2</td>
<td>0.1</td>
<td>2.3</td>
<td>1.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>g/dL</td>
<td>13.3</td>
<td>10.4</td>
<td>9.9</td>
<td>9.4</td>
<td>9.8</td>
<td>9.7</td>
</tr>
<tr>
<td>Platelets</td>
<td>x10 9/L</td>
<td>253</td>
<td>163</td>
<td>162</td>
<td>156</td>
<td>165</td>
<td>179</td>
</tr>
<tr>
<td>Procalcitonin</td>
<td>ug/L</td>
<td>0.28</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Blood Cell</td>
<td>x10 9/L</td>
<td>20.0</td>
<td>7.6</td>
<td>6.3</td>
<td>7.9</td>
<td>7.6</td>
<td>8.7</td>
</tr>
</tbody>
</table>
Then this happened

- An astute microbiology lab technician saw larvae on the sputum gram stain.

<table>
<thead>
<tr>
<th>MICROBIOLOGY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ova, cyst parasite</td>
<td></td>
</tr>
<tr>
<td>Sample Origin</td>
<td>Sputum, Induced</td>
</tr>
<tr>
<td>Request status</td>
<td>Completed</td>
</tr>
<tr>
<td>Visual Aspect</td>
<td>.</td>
</tr>
<tr>
<td>S. stercoralis larva</td>
<td>seen</td>
</tr>
</tbody>
</table>
• Bronchoalveolar lavage done one week later when patient improved:
 • Cell counts – unable to perform
 • Strongyloides not seen in BAL
 • Bacterial cultures: **E Coli**
 • PCP NEG
 • AFB cultures NEG
 • Fungal cultures yeast 1+
Progress

- Covered with Ivermectin and albendazole
- Iv ceftriaxone for E Coli
CXR 6 months post discharge
Strongyloides hyperinfection

• Immunocompromised host
• Heavy hematogenous seeding to various organs including lungs, liver, heart, CNS.
• 30-45%: Gram negative septicemia from GI source
• High mortality
• Optimal treatment duration uncertain – determined by clinical response
None of the patients had peripheral eosinophilia.

Could be due to long term immunosuppression or gram negative septicemia

In summary

• Know the causes of peripheral eosinophilia

• Eosinophilic lung disease can occur with or without systemic involvement

• If there is eos + lung involvement: evaluate for secondary causes first

• Some cases of eosinophilic lung disease do not have peripheral eosinophilia:
 • Strongyloides hyperinfection
 • Acute eosinophilic pneumonia
 • Chronic eosinophilic pneumonia (<10% of patients)

• Don’t forget the other causes: malignancy, asthma, idiopathic interstitial pneumonia (IPF, chronic HP, Cryptogenic organizing pneumonia)
Thank you

Gin_tsen_chai@ttsh.com.sg